A storm of feasibility pumps for nonconvex MINLP

نویسندگان

  • Claudia D'Ambrosio
  • Antonio Frangioni
  • Leo Liberti
  • Andrea Lodi
چکیده

One of the foremost difficulties in solving Mixed-Integer Nonlinear Programs, either with exact or heuristic methods, is to find a feasible point. We address this issue with a new feasibility pump algorithm tailored for nonconvex Mixed-Integer Nonlinear Programs. Feasibility pumps are algorithms that iterate between solving a continuous relaxation and a mixed-integer relaxation of the original problems. Such approaches currently exist in the literature for Mixed-Integer Linear Programs and convex Mixed-Integer Nonlinear Programs: both cases exhibit the distinctive property that the continuous relaxation can be solved in polynomial time. In nonconvex Mixed-Integer Nonlinear Programming such a property does not hold, and therefore special care has to be exercised in order to allow feasibility pump algorithms to rely only on local optima of the continuous relaxation. Based on a new, high level view of feasibility pump algorithms as a special case of the well-known successive projection method, we show that many possible different variants of the approach can be developed, depending on how several different (orthogonal) implementation choices are taken. A remarkable twist of feasibility pump algorithms is that, unlike most previous successive projection methods from the literature, projection is “naturally” taken in two different norms in the two different subproblems. To cope with this issue while retaining the local convergence properties of standard successive projection methods we propose the introduction of appropriate norm constraints in the subproblems; these actually seem to significantly improve the practical performance of the approach. We present extensive computational results on the MINLPLib, showing the effectiveness and efficiency of our algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three ideas for a feasibility pump for nonconvex MINLP

We describe an implementation of the Feasibility Pump heuristic for nonconvex MINLPs. Our implementation takes advantage of three novel techniques, which we discuss here: a hierarchy of procedures for obtaining an integer solution, a generalized definition of the distance function that takes into account the nonlinear character of the problem, and the insertion of linearization cuts for nonconv...

متن کامل

Improved Formulations and Computational Strategies for the Solution and Nonconvex Generalized Disjunctive Programs

Many optimization problems require the modelling of discrete and continuous variables, giving rise to mixed-integer linear and mixed-integer nonlinear programming (MILP / MINLP). An alternative representation of MINLP is Generalized Disjunctive Programming (GDP)1. GDP models are represented through continuous and Boolean variables, and involve algebraic equations, disjunctions, and logic propos...

متن کامل

Mixed-Integer Nonlinear Optimization

Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of ...

متن کامل

An MINLP Solution Method for a Water Network Problem

We propose a solution method for a water-network optimization problem using a nonconvex continuous NLP relaxation and an MINLP search. We report successful computational experience using available MINLP software on problems from the literature and on difficult real-world instances.

متن کامل

Disjunctive Cuts for Nonconvex Minlp

Mixed Integer Nonlinear Programming (MINLP) problems present two main challenges: the integrality of a subset of variables and nonconvex (nonlinear) objective function and constraints. Many exact solvers for MINLP are branch-and-bound algorithms that compute a lower bound on the optimal solution using a linear programming relaxation of the original problem. In order to solve these problems to o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2012